<u>Untersuchungen zum Einsatz von</u> <u>Magnetorheologischen Fluiden in Kupplungen</u>

Gefördert vom Sächsischen Staatsministerium für Wirtschaft und Arbeit Landesinnovationskolleg "Intelligente Funktionsmodule der Maschinentechnik".

<u>Inhalt</u>

- Zielstellung
- Wirkungsweise und Aufbau von MRF
- Entmischung von MRF in Scheibengeometrien
- Permanentmagnetabdichtung f
 ür MRF
- Drehmomentübertragungsgleichungen
- Experimentelle Untersuchungen
- Zusammenfassung und Ausblick

Verteidigung der an der Fakultät Maschinenwesen der Technischen Universität Dresden von Dietrich Lampe eingereichten Dissertation

Zielstellung

Technologieentwicklung für Maschinentechnik

"Intelligente" Kupplung auf der Basis magnetorheoloischer Fluide

Erhöhte Anforderungen

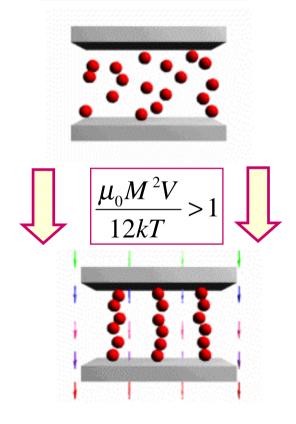
• Direkte elektrische Ansteuerbarkeit

- Kürzere Reaktionszeiten
- Geringerer Verschleiß
- Reproduzierbarkeit

Neue Möglichkeiten

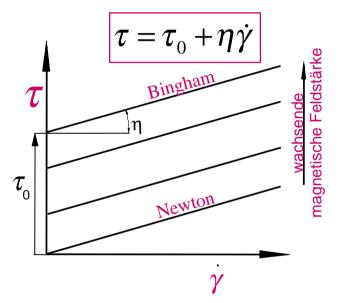
 Magnetorheologische Fluide mit höherer Leistungsfähigkeit und besserer Stabilität

Zu untersuchende Probleme


- Drehmomentübertragungseigenschaften
 - Entmischung durch Zentrifugalkräfte
 - Abdichtmethoden

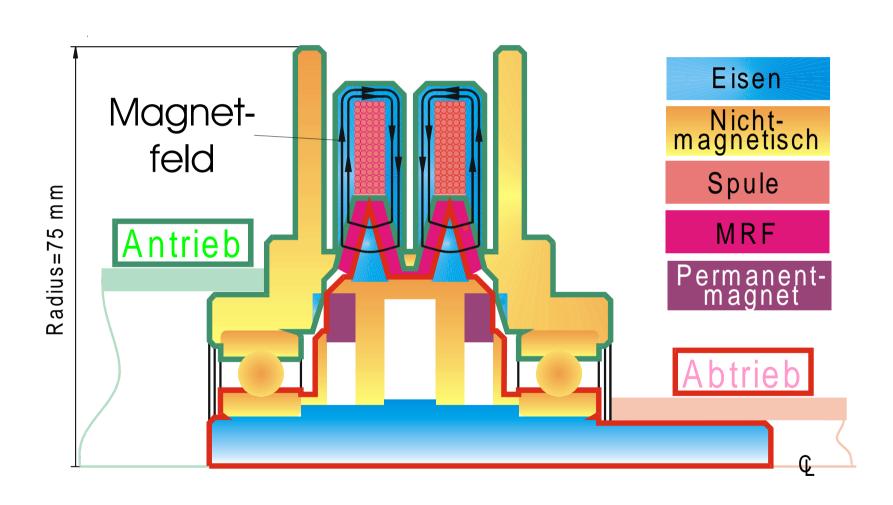
Wirkungsweise und Aufbau von MRF

Zusammensetzung


• Ferromagnetische Partikel, Basisöl, Stabilisator

Funktionsweise

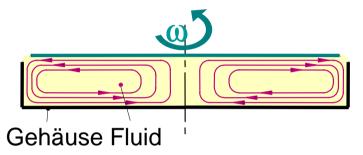
Strömungsmechanische Beschreibung


• Bingham-Fluid:

• a: statische Grenzscherspannung au_{ys}

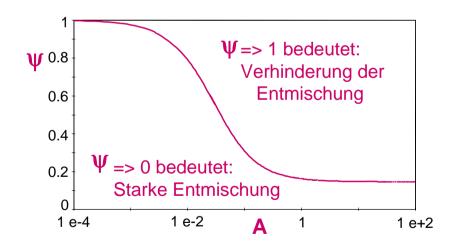
b: dynamische Grenzscherspannung au_{yd}

Aufbau einer MRF-Kupplung



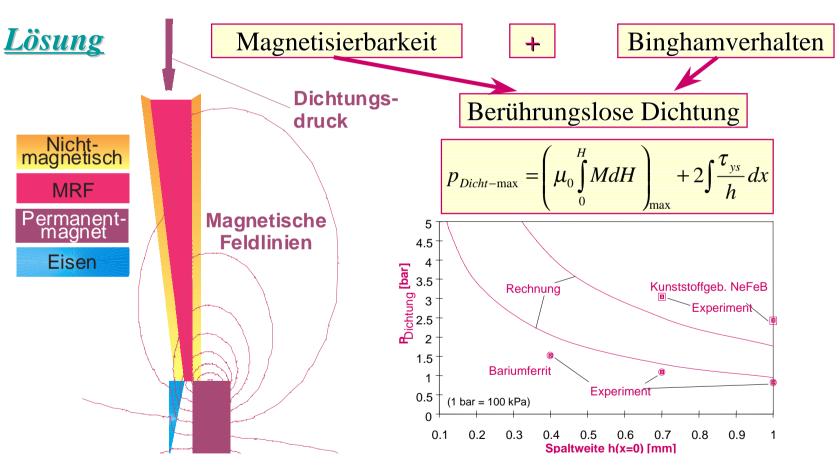
Entmischung von MRF in Scheibengeometrien

Problem Auszentrifugierung der Partikel aufgrund des Dichteunterschiedes

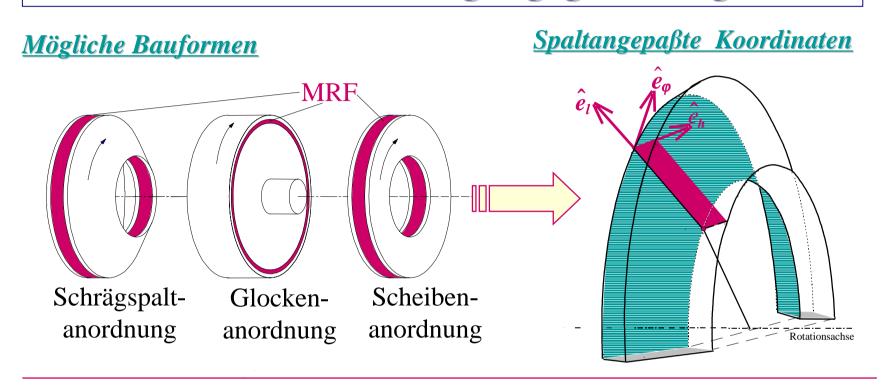

Lösung

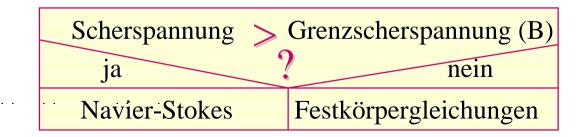
 Zirkulationsströmung

- Kräfte auf Partikel:
 - a: Zentrifugalkraft
 - b: Strömungswiderstand (Stokes)
- => charakteristischer Parameter


$$A = \left(\frac{R_p}{S}\right)^2 \frac{v_M \left(\rho_p - \rho_f\right)}{\eta_f}$$

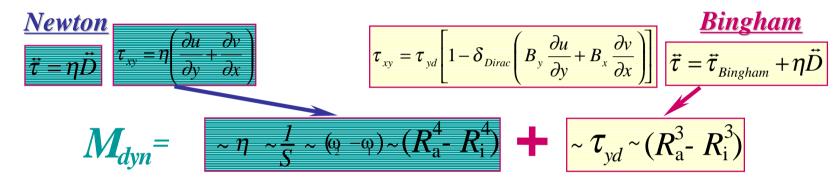
Spaltvergrößerung verhindert Fluidentmischung


Permanentmagnetabdichtung für MRF


Problem Gummidichtungen für MRF ungeeignet

Höhere Dichtungsdrücke als bei Ferrofluiden Experiment bestätigt Rechnung

<u>Drehmomentübertragungsgleichungen</u>



<u>Drehmomentübertragungsgleichungen</u>

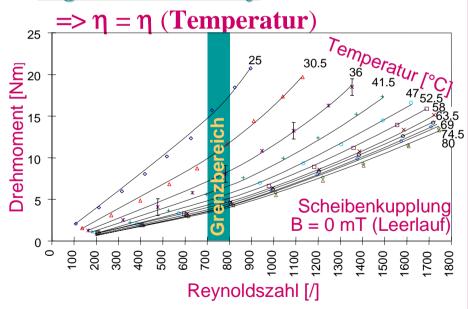
MRF im flüssigen Zustand

- NS-Gleichungen in spaltangepaßten Koordinaten
- Neues 3d-Binghammodell (bisher nur 2d $\tau = \tau_0 + \eta \dot{\gamma}$)

MRF im festen Zustand

- Spannung ~ Dehnung ~ radiale Position
- au_{vs} maximal ertragbare Spannung bei maximalem Radius

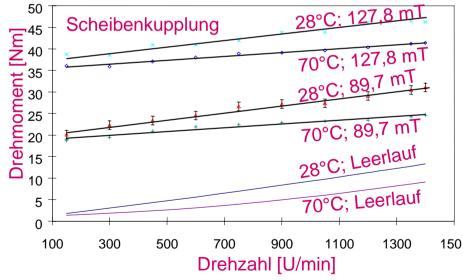
$$M_{max \ stat} = \sim \tau_{ys} \sim (R_a^4 - R_i^4) \sim \frac{1}{R_a}$$


Experimentelle Untersuchungen an MRF-Kupplungen

Im Fluidmodus

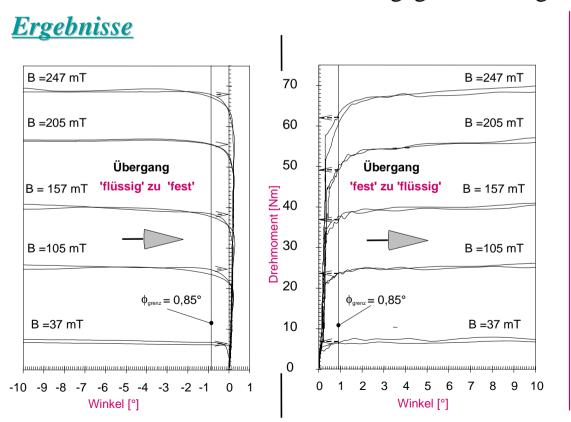
<u>Untersuchungsziele</u>

- Drehmomente als Funktion von Drehzahl, Magnetfeldstärke, Temperatur
- Basisviskosität und dynamische Grenzscherspannung der MRF
- Nachweis der Korrektheit der theoretisch abgeleiteten Drehmomentgleichungen
- Bestimmung der Grenzreynoldszahl


Ergebnisse Leerlauf

$$\mathbf{Re}_{Grenz} = 750$$

Ergebnisse mit Magnetfeld


Nachweis der Linearisierbarkeit des Geschwindigkeitsprofiles durch Magnetfeld

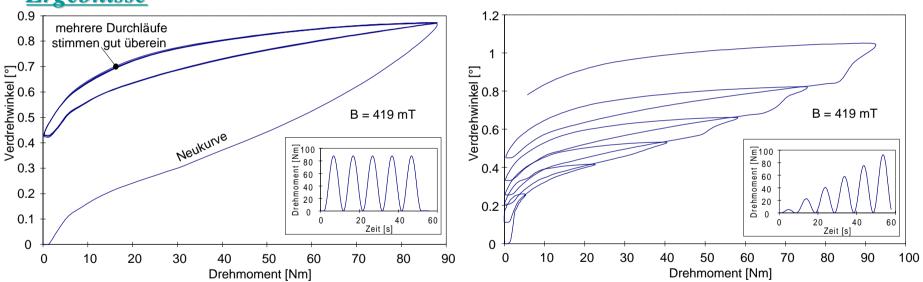
Experimentelle Untersuchungen an MRF-Kupplungen

Phasenübergang zwischen Festkörper- und Fluidmodus

<u>Untersuchungsziele</u>

- Statische und dynamische Grenzdrehmomente und Grenzschubspannungen
- Übergang zwischen synchroner und schlupfender Drehmomentübertragung
- Einfluss der Drehmomentänderungsgeschwindigkeit

- Erstmals τ_{ys} und τ_{yd} separat gemessen
- Trotz $\tau_{ys} > \tau_{yd}$ => für Scheibenkupplung: $M_{max-stat} < M_{min-dyn}$
- Kupplungsdesign ohne Drehmomentsprung ermöglicht


Experimentelle Untersuchungen an MRF-Kupplungen

<u>Im Festkörpermodus</u>

<u>Untersuchungsziele</u>

- Kriechverhalten von MRF
- MRF im festen Zustand als linear-elastische Körper?
- Schubmodul durch magnetische Feldstärke beeinflussbar?

Ergebnisse

- Maximalverdrehwinkel unabhängig von Verformungsgeschichte
- Remanenter Verdrehwinkel nach-Belastungsabbau stets vorhanden
- Verdrehung nicht linear zur Drehmomentbelastung Kein Kriechen meßbar
- Nur bei Annäherung an von B abhängiges Grenzdrehmoment ist Einfluss auf remanente Verformung zu registrieren

Zusammenfassung und Ausblick

Gewonnene Erkenntnisse

- Verhinderung der Entmischung durch Fluidzirkulation
- Abdichtung von MRF-Kupplungen mittels Permanentmagneten
- Dreidimensionales Binghammodell abgeleitet
- Abgeleitete Drehmomentübertragungsgleichungen experimentell bestätigt
- Grenzreynoldszahl $Re_{Grenz} = 750$
- Linearisierung des Geschwindigkeitsprofiles durch Magnetfeld
- Existenz eines Verdrehwinkels für maximales im festen MRF-Zustand übertragbares Drehmoment gezeigt und Größe bestimmt
- Bei Lastabbau verbleibt remanente Verformung der MRF -Größe hängt von der vorher erreichten Maximallast und der Feldstärke ab
- Durch die Feldstärke steuerbarer Schubmodul für MRF nicht existent
- Last ohne messbares Kriechen ertragbar.
- Schaltzeiten theoretisch analysiert und experimentell bestimmt

<u>Ausblick</u>

- Anwendungsreifer Entwicklungsstand von MRF-Kupplungen
- Perspektiven für:
 Antriebstechnik
 Energieerzeugung
 - Wickelvorgänge Automobilbereich Spezielle Anwendungen